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Cellular heterogeneity is an inherent property of cell popula-
tions with a wide spectrum of biological manifestations, ranging
from barely observable variations that enhance organismal
adaptation, to life-threatening differences. Single-cell metabolo-
mics can reveal molecular information and variations in
metabolite concentrations between cells that are masked in
cell-population studies. These differences are quantitatively
captured by the abundance distributions for the population
and their statistical analysis can reveal the presence of latent
subpopulations. In recent years, mass spectrometry (MS),
combined with novel sampling and ionization techniques, has
become an important tool for single-cell metabolomics. These

new techniques must contend with significant challenges in the
form of small cell sizes and volumes, ultratrace metabolite
amounts per cell, and potentially interfering high turnover rates
and rapid diffusion. Owing to the ultrasmall sample volume,
low abundance of some metabolites, and poor ionization
efficiencies, metabolite detection, identification, and accurate
quantitation remain a major challenge. The ability of some
techniques to analyze tissue-embedded cells opens the door for
spatial metabolomics, potentially revealing cellular synergism in
organ level metabolism. In this Concept article, we present a
bird’s eye view of these major themes in single cell metab-
olomics and some of the relevant MS-based methods.

1. Introduction

Compositional heterogeneity is an inherent property of cell
populations, including isogenic populations, that can be
manifested in phenotypic differences. Heterogeneity of metab-
olite levels can stem from stochastic transcription events, the
functioning of enzymes with low copy numbers, and random
environmental perturbations.[1] Metabolite levels determined by
single-cell analysis provide information on the actual function-
ing of metabolic pathways in the individual cell and it is
considered to be the closest molecular readout of cellular
phenotypes.[2,3] Capturing population statistics from single-cell
measurements, recognizing patterns of heterogeneity, and
assessing the functional information of identified patterns are
required as a combined approach to study heterogeneity in a
biological system.[4]

With high sensitivity, broad molecular coverage, wide
dynamic range, and structural identification capabilities, mass
spectrometry (MS) is becoming a powerful platform for single-
cell metabolomics that allows for the determination of cellular
metabolite levels (see Figure 1). Conventional MS-based assays
focus on obtaining molecular information from the average
response of a cell population, typically involving 106 cells,
ignoring the unique properties arising from cell-to-cell
variations.[5] In single-cell metabolomics, spatiotemporal varia-
tions, including cell division, and response to environmental
perturbations can be acquired.[6] Single-cell metabolomics can
provide relevant information about the phenotypic variations

between individual cells. In addition to population-wide
heterogeneity, rare cells and hidden subpopulations can also
be discovered using single-cell techniques.[7] Cell-to-cell com-
munication, and interactions with other cells can be captured
in relation to diseases or specific cellular pathways.[8]

The main challenges in single-cell metabolomics originate
from the small linear dimensions and very low volume of a cell
(e.g., ~1 pL for a typical mammalian cell, or 0.6 fL for a bacterial
cell in Figure 2), large number of biochemical species in low
absolute amounts, wide dynamic range of their concentrations,
their large structural diversity, high rate of molecular diffusion,
and rapid turnover rates.[9] Because of the rapid turnover rates
of some metabolites, keeping cells in their native environment
(in situ or preferably in vivo) during analysis is critical to avoid
or mitigate the perturbations caused by chemical and/or
physical treatment (external environmental influences).[10–11]

Additionally, although a vast ensemble of various cell lines can
be cultured in vitro, the metabolic profiles of such cells appear
significantly different in vivo.[12]

Because of the small linear dimensions of cells, high-
precision cell manipulation platforms are necessary. Depending
on cell size and volume, ranging from ~1 μm and 1 fL,
respectively, in bacteria to ~50 μm and 1 nL, respectively, in
plant cells, different methods are utilized for manipulation. In
addition, different tools are required for free floating (circulat-
ing) and tissue embedded cells. For example, microfluidics
platforms are used for high-throughput single-cell isolation
from bulk populations of free floating cells with relatively low
perturbation of cell metabolism.[13] In the nanoPOTS technol-
ogy, used mostly for single cell proteomics, cells isolated by
fluorescence-activated cell sorting are chemically processed in
nanowells that provide a highly confined volume to avoid
unnecessary dilution of the cell content.[14] Tissue embedded
mammalian and plant cells can be interrogated by focused ion
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beams (secondary ion MS, SIMS, and multiplexed ion beam
imaging, MIBI) or laser beams (matrix-assisted laser desorption
ionization, MALDI, and laser ablation electrospray ionization,
LAESI), or capillary microsampling.[15–17]

Specific challenges stem from the MS technology itself.
Despite recent progress with respect to sensitivity and mass
resolution, putative identification of metabolites based exclu-
sively on accurate masses is often ambiguous, as many ions
and ion adducts can have indistinguishable measured
masses.[18] Structural isomers further complicate metabolite
identification, sometimes leading to misannotation, which
cannot be resolved without additional methods, such as high-
resolution ion mobility separation (IMS).[19] The ion intensities
for individual analytes, even at identical concentrations, can be
very different when ionization efficiencies are dissimilar.
Furthermore, in-source fragmentation produces unwanted by-
products that are identical to ions of other metabolites, and
can result in flawed quantitation.[19] In cases where the hunt is
on for new compounds, it is critical to distinguish between
sample- and background-related species (i. e., artifacts). This,
however, can be difficult and may require additional analytical
techniques to supplement the findings.

To reveal cellular heterogeneity, MS approaches with
sufficiently low limits of detection (LODs) for single-cell
metabolomics need to be developed and validated. As some
metabolite concentrations are at the low μM level, depending
on the cell volume, MS-based approaches with LODs in the
range of 1 zmol to 1 amol present suitable analytical platforms
for single cells. In this Concept article, we explore the
opportunities and challenges for MS methods in single cell
metabolomics.

2. Opportunities

2.1. Characterization of cellular heterogeneity and hidden
phenotypes

Stochastic variations in biological processes, such as fluctua-
tions in gene expression, enzyme activity and metabolite levels,
the stage in the cell-cycle, the number of ribosomes, and the
quantity of proteins bring individual characteristics to single
cells that cannot be revealed in bulk analysis.[20] In addition,
extrinsic parameters including variations in the concentrations
of extracellular chemical species can cause cellular
heterogeneity.[21] All these variations are reflected in the
distributions of abundances, ci,j, of the i-th metabolite in the j-
th cell throughout the population (see Figure 3) that can be
inferred from the corresponding normalized ion intensities, Ii,j,
measured by single-cell MS. For unimodal distributions, a
quantitative metric of these variations are the metabolic noise
values, ηi

2, defined as ηi
2 =σi

2/μi
2, where the means, μi, and the

standard deviations, σi, of the abundances are, mi¼ hci;ji
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Characterization of bimodal distributions relies on decon-

volution of the abundance distribution into two components,
for example, two normal distributions with separate μi,1 and μi,2,
and σi,1 and σi,2 values (see Figure 3b). Establishing clearly
separated subpopulations in such cases is not trivial. Multiple
statistical criteria have been developed depending on the
nature of the underlying subpopulation distributions. For
example, for two normal distributions the Ashman’s criterium
states that Di >2 is required for their distinction (Equation 1).
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Metabolic noise can be defined for the subpopulations
similarly to the unimodal case, i. e., ηi,1

2 =σi,1
2/μi,1

2 and ηi,2
2 =

σi,2
2/μi,2

2. These subpopulations are often not recognized by any
other means, e.g., by color or morphometric differences, and
remain hidden.
Post hoc recognition of such biochemical phenotypes can

provide new insight into otherwise homogeneous populations.
Identification of these latent cellular subtypes (Opportunity
1), resulting from upregulation or downregulation of certain
biomolecular levels, is enabled by single cell approaches.
Chemical classification of cellular subtypes can elucidate
cellular specialization, function, or malfunction within a tissue.
For example, bimodal metabolite distributions were detected
by optical fiber-based laser ablation electrospray ionization MS
(f-LAESI-MS) of soybean (Glycine max) root nodule cells infected
by rhizobia (Bradyrhizobium japonicum).[22] For malate, a primary
metabolite in plant cells, the bimodal abundance distribution
in the nodules was attributed to different malate concentra-

tions in quiescent and dividing bacteroids in the infected plant
cells.[22]

Distinct metabolic states (Opportunity 2) can be man-
ifested in response to external perturbations. For example, in
the left panel of Figure 4 healthy human hepatocytes exhibit
high adenylate energy charge, AEC=0.82�0.12 with low
metabolic noise, η2 =σ2/μ2 =0.021. Rotenone treatment induces
mitochondrial dysfunction resulting in apoptosis characterized
by a low energy state, AEC=0.16�0.12, and high metabolic
noise, η2 =0.562.[6] In the right panel of Figure 4, yeast cells
exposed to oxidative stress upregulate glutathione, a major
redox buffer, compared to control cells raised in regular
medium.[23]

Rare cells (Opportunity 3), such as cancer stem cells,
circulating tumor cells, etc., represent minor cell types in
which transcript, protein, or metabolite profiles are significantly
different from the rest of the population (see Figure 3c). For
this reason, there is no need to deconvolute the overall
distribution for the two subpopulations, and the μi,1, μi,2, and
σi,1, σi,2 values can be directly calculated. For free floating cells,
the combination of enrichment by flow cytometry and
metabolomics, adapted for low cell numbers, enables the

Figure 1. Opportunities in single-cell MS. Metabolite abundances, ci,j (bottom left panel), for the i-th metabolite in the j-th cell, measured by single-cell MS can
be statistically analyzed to glean information on the metabolic states of the constituent cell subpopulations. For example, two metabolically distinct
subpopulations can be revealed post hoc according to the corresponding mean metabolite abundances, μ1 and μ2, that differ from the average metabolite
abundance for the whole population, μw (bottom right panel). In spatial metabolomics, cell location and metabolite abundance information are collected (top
right panel).
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capture of metabolic profiles for rare cells. For example, the
metabolic profiles of rare hematopoietic stem cells (HSCs),
isolated by flow cytometry, were obtained using liquid
chromatography and orbitrap MS.[24] They found 78 significantly
up- or downregulated metabolites for HSCs compared to whole
bone marrow cells. At the single cell level, microfluidic enrich-
ment followed by live single cell (LSC) MS yielded metabolomic
profiles for circulating tumor cells (CTCs) obtained from 2
cancer types.[25] Compared to lymphocytes, CTCs showed 119
peaks specific to CTCs.

Single cell metabolomic measurements can yield hundreds
of spectral features per cell and capture differences that are not
manifested in the abundances of a single component. In-depth
interpretation of cellular heterogeneity in such high-dimen-
sional data requires dimensionality reduction. The multivariate
statistical methods used to extract the underlying cell cluster
organization include principal component analysis (PCA),
orthogonal projections for latent structures discriminant analy-
sis (OPLS-DA), and for high-dimensional datasets t-distributed
stochastic neighborhood embedding (t-SNE), and uniform
manifold approximation and projection (UMAP) (see Fig-
ure 3d).[26] The latter approaches can reveal the presence of
multiple hidden phenotypes.

2.2. Cellular genotype vs phenotype

Metabolites are the final downstream products of gene
expression that, in principle, connect cellular genotype and
phenotype. However, this connection can be significantly
altered by environmental and ontogenetic factors. Due to the
stochastic fluctuations in biological events arising from the low
copy numbers of certain transcripts and proteins, cellular
heterogeneity develops even in isogenic cell populations that
exist in the same microenvironment. Over time this leads to
variations in the cell cycle, and the stage the cell occupies.
Among the most visible consequences of phenotypic variations
are differences in cellular size and shape. Morphometric cell
classification based on image analysis in microscopy in
combination with cellular resolution MSI can be used to
correlate histological features with metabolic differences.[27]

Thus, metabolites reflect cellular heterogeneity as they
are affected by the integrated influence of gene expression,
protein function, and upstream cellular processes (Opportu-
nity 4).[28–29] For example, connecting tissue response to drug
exposure solely with genotypes may be incomplete, whereas
incorporating the corresponding cellular phenotypes can
provide information on the relevant molecular pathways that
are targeted by the drug. In an early study, using a microarrays
for MS (MAMS) platform, phenotypic differences in S. cerevisiae

Figure 2. Comparison of cell sizes and volumes for a plant (G. max root nodule cell, blue) infected by bacteria (B. japonicum cell, red) in a colorized SEM image.
The plant cell long and short axes are 16.7 μm and 13.6 μm, respectively, whereas a bacterial cell long and short axes are 2.4 μm and 0.55 μm, respectively.
Approximating the cells by cylinders yields 2430 fL and 0.6 fL for their volumes, i. e., the plant cell is ~4000 larger than the bacterial cell in volume.
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cell populations were uncovered. Comparing wild-type yeast
cells with ones treated with a glycolysis inhibitor drug (2-
deoxy-D-glucose), and with mutant cells (ΔPFK2) lacking one of
the isoenzymes in the glycolysis pathway (phosphofructoki-
nase) by MAMS revealed the presence of two phenotypes with
different fructose-1,6-bisphosphate levels in the drug-treated
cell population.[30]

There is a growing number of comparative studies
performed at the single cell level. For example, cellular
heterogeneity changes between control and lipopolysaccharide
(LPS) treated macrophages were investigated at the single cell
level by MALDI-MS imaging.[31] Upon LPS stimulation, the
abundances of selected phospholipids exhibited broader
distributions with higher mean values.

2.3. Single cell physiology

A comprehensive view of cellular physiology can be obtained
by capturing some vital metabolic parameters (Opportunity 5)
of the cell. Important examples include the cellular energy
available to support healthy functioning expressed by the
adenylate energy charge (AEC= ([ATP]+0.5[ADP])/([ATP]+

[ADP]+ [AMP])), as well as the redox state of the cell
characterized by the reduced to oxidized glutathione ratio
([GSH/GSSG]). Single cell metabolomics enables the measure-
ment of these parameters for every analyzed cell.[6] In
hepatocyte cell cultures, administering rotenone, a metabolic
modulator that shuts down the electron transport chain in the
mitochondria, resulted in reduced ATP production and a major
downshift in the AEC levels. Hepatocytes exposed to oxidative
stress exhibited a downshift in the [GSH/GSSG] ratio.

Figure 3. a) Unimodal and b) bimodal abundance distributions of metabolites detected at single cell level. The blue and green dashed curves represent the
deconvoluted metabolite distribution. c) Rare cells were identified based on their significantly different metabolomic profile from the rest of the cell
population. d) Subpopulations established by UMAP projection based on fumarate abundances in A. cepa epidermal cells (n=1084).[55] Adapted with
permission from Ref. [55]. Copyright 2021 American Chemical Society.
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One of the early examples of recognizing cellular hetero-
geneity was the discovery and characterization of the cell cycle.
Multiparametric flow cytometry measurements revealed fine
details of cell cycle stages beyond the commonly recognized
Gap 1 (G1), Synthesis (S), Gap 2 (G2), Mitosis (M) states, and the
quiescent (G0) state.[32] Further distinctions were made for the
five stages involved in mitosis: prometaphase, metaphase,
anaphase, telophase, and cytokinesis. Although these stages
were distinguished based on the synthesis and redistribution of
DNA, they also implied differences in metabolic processes.
Using capillary microsampling ESI-IMS-MS combined with
fluorescence microscopy, distributions of AEC, [GTP]/[GDP], and
[Hex-bis-P]/[Hex-P] ratios were compared for individual hepato-
cellular carcinoma cells at distinct mitotic stages.[33] Whereas
the overall distribution of AEC for all miotic cells confirmed the
presence of sufficient energy for proper cell functioning in all
stages, a significant increase (p=0.005) of AEC was observed
between prometaphase (0.77�0.13) and metaphase (0.93�
0.06). At the same time, the AEC metabolic noise decreased
from η2 =0.029 to η2 =0.004, respectively.

Due to the extensive need for biosynthesis in cycling cells,
they exhibit higher metabolic rates, e.g., elevated rate of
glycolysis, than their quiescent (dormant) cells counterparts.[34]

When cells in both states are present in a population, the
distributions of certain metabolites can become bimodal. A
potential example was observed in soybean root nodule cells
hosting nitrogen fixing bacteroids transformed from soil
bacteria.[18] In plant cells partially colonized by bacteroids, it
was inferred that the latter were in a proliferating state,
whereas in fully colonized plant cells, they were in a quiescent
state induced by the limited volume available in the host cell.
These two subpopulations provided a potential explanation for
the observed bimodal NAD+ distributions.

2.4. Spatial metabolomics

Cells in the tissues of multicellular organisms are arranged in
space to efficiently function together. This gives rise to cellular
specialization into synergistic phenotypes. Recent advances in
the metabolomics of tissue embedded single cells have
opened the door to explore these spatial arrangements
(Opportunity 6). These methods grew out of the many
modalities of MS imaging (MSI), including SIMS, MALDI, and f-
LAESI.[35–39] These methods represent different tradeoffs be-
tween spatial resolution (~0.1 μm, ~5 μm, and ~30 μm, for
SIMS, MALDI, and f-LAESI, respectively), degree of ion fragmen-
tation (SIMS > MALDI � f-LAESI), and the complexity of sample
preparation (MALDI > SIMS > f-LAESI). Although the introduc-
tion of gas cluster ion beams (GCIBs) greatly reduces the
degree of fragmentation in SIMS, for many small metabolites
there is still significant ion degradation observed.[35] Never-
theless, subcellular tracking of metabolite levels by GCIB-SIMS
provides unprecedented insight into spatial localization of
biological processes, e.g., the first direct observation of
metabolic channeling.[35] In an emerging indirect approach,
quantitative spatial proteomics, based on multiplexed ion
beam imaging (MIBI), is used to discern the enzymatic
regulation of metabolic pathways.[40]

With the spatial capabilities available, single cell transcript,
protein, and metabolite atlases (Opportunity 7) are being
created for various tissues, organs, organisms, and their
developmental stages. Currently, the Single Cell Expression
Atlas (https://www.ebi.ac.uk/gxa/sc/home, last visited on 6/24/
2021) covers transcripts for 18 species, and data on >5,000,000
cells. The Human Cell Atlas (https://www.humancellatlas.org/,
last visited on 6/24/2021) and the Human Cell Landscape
(https://db.cngb.org/HCL/, last visited on 6/24/2021) focus on
the mapping of transcripts for the thousands of cell types
present in the human body. The Human Protein Atlas (https://

Figure 4. Metabolic states can be manifested in response to external perturbations. (Left panel) Healthy human hepatocytes (black bars, n=24 cells) exhibit
high adenylate energy charge, AEC=0.82�0.12 with low metabolic noise, η2 =σ2/μ2 =0.021. Rotenone treatment (gray bars, n=24 cells) induces
mitochondrial dysfunction resulting in apoptosis characterized by a low energy state, AEC=0.16�0.12 and high metabolic noise, η2 =0.562.[6] Adapted with
permission from Ref. [6]. Copyright 2015 American Chemical Society. (Right panel) Yeast cells (n=80 cells) exposed to oxidative stress (gray bars) upregulate
glutathione, a major redox buffer, compared to control cells raised in regular medium (black bars).[23] Adapted with permission from Ref. [23]. Copyright 2013
Wiley-VCH Verlag GmbH & Co. KGaA.
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www.proteinatlas.org/, last visited on 6/24/2021) captures the
subcellular localization of transcripts and proteins and derives
tissue/cell specific metabolic pathways. These atlases continu-
ously curate new information, as more single cell proteomics
and metabolomics data become available.

Additional research in single cell metabolomics will yield
insights into cellular heterogeneity at the metabolite level,
reveal the existence of hidden metabolic phenotypes, and
illuminate the relationship between cell physiology, spatial
distribution, and metabolic states.

3. Challenges

3.1. Cell size and cell manipulation

The small linear dimensions of single cells present major
challenges in the manipulation and sampling of free floating
(circulating) and tissue embedded cells. Cell sizes are strongly
kingdom dependent. Unicellular organisms (e.g., bacteria) in
the Kingdom Monera are 0.3 to 3 μm in diameter on average.
Animal cells (Kingdom Animalia) are 10 to 30 μm in size,
whereas plant cells (Kingdom Plantae) are in the 10 to 100 μm
range. A direct comparison of bacterial and plant cell sizes is
shown in Figure 2. The SEM image of G. max root nodule cells
infected by B. japonicum indicates that the plant cell long and
short axes are 16.7 μm and 13.6 μm, respectively, whereas a
bacterial cell long and short axes are 2.4 μm and 0.55 μm,
respectively. This means that cell manipulation, i. e., cell
selection, isolation, and holding, requires specialized instru-
mentation for each cell type. As cell metabolism can be
affected by mechanical perturbations, manipulation has to be
kept at minimum.

The most commonly used single-cell isolation methods for
free floating cells or cells dissociated from tissues include
manual and robotic micromanipulation, fluorescence-activated
cell sorting (FACS), and microfluidics.[41] For tissue embedded
cells, laser capture microdissection (LCM), optical tweezers,[42]

and in situ sampling by laser or ion beams are applicable.
Methods are selected based on the cell size, sampling yield,
throughput, and the degree of tolerable perturbation. Analyte
loss during manipulation and sampling, as well as chemical
perturbation are to be kept at a minimum.

In FACS, transcriptional and epigenetic alterations, as well
as cell loss for tightly bound cells are common pitfalls.
Microfluidic or lab-on-a-chip devices are high-throughput and
sensitive platforms that offer high capture efficiency and
minimized cell damage. For example, the rapid isolation of
CTCs from unprocessed blood of a cancer patient using
microfluidic device, allowed for in situ phenotypic and molec-
ular characterization of trapped cells.[43] In LCM, cells are
selected from a fixed tissue. Although it allows to keep spatial
distribution information for single cells, it is a time-consuming
process and requires expert personnel to harvest the cells.[41]

Keeping the sample under ambient conditions reduces
metabolic stress and perturbations, and integrating the sam-
pling step with analysis can be a gentle approach for single cell

metabolomics.[44] For example, recently LAESI was employed for
the sampling and analysis of single Allium cepa epidermal cells
using a reflective objective to target selected cells for ambient
in situ spatial metabolomics.[45] However, preserving cells under
ambient conditions is not always trivial. Cells exposed to the
open atmosphere can lose their native water content to
evaporation if proper steps are not undertaken. For example,
humidity-controlled enclosures can be used to minimize water
evaporation from the cells.

3.2. Cell volume and metabolite pools per cell

The small linear dimensions of cells result in miniscule sample
volumes, i. e., single cell analysis is severely volume limited. Cell
volumes for the three kingdoms differ by orders of magnitude.
For example, in Escherichia coli, Homo sapiens, and Arabidopsis
thaliana the typical cell volumes are ~1 fL, 1 pL, and 20 pL,
respectively. Considering the metabolite concentrations in
these cells, ranges for their absolute amounts (pools) per cell
can be estimated as 10� 7 to 0.1 fmol for E. coli, 0.01 to 30 fmol
for H. sapiens, and 2 to 10,000 fmol for A. thaliana.[46] A
comparison of cell volumes for a G. max root nodule cell
infected by B. japonicum in Figure 2 indicates 2430 fL and 0.6 fL
for their volumes, respectively, i. e., the plant cell is ~4000
larger than the bacterial cell.

The small metabolite amounts per cell limit their detection
to those with higher abundances or high ionization efficiencies.
Therefore, improvement in LOD of the analysis platform, e.g.,
to the low amol range for human cells, is a common objective
to maximize the chemical information obtained in single cell
metabolomics.[47] Absolute metabolite concentrations are avail-
able for various cell types based on bulk cell culture
measurements.[48] Table 1 summarizes the concentrations and
absolute amounts (pools or reservoirs) of metabolites in single
plant (A. thaliana), mammalian (iBMK), yeast (S. cerevisiae), and
bacterial (E. coli) cells. The pools of different metabolites in a
cell can span six orders of magnitude, e.g., from 0.5 zmol to
1 pmol, emphasizing the need for MS techniques with ultrahigh
sensitivity and wide dynamic range. Some of the MS techniques
applied for single cell and subcellular analysis exhibit LODs
comparable to the amounts of metabolites with low abun-
dance.

The relative ion intensities obtained for small metabolites in
capillary microsampling ESI-IMS-MS of human hepatocytes
showed that high abundance ions included glutamate, hexose
phosphate, reduced glutathione, ADP, ATP, UDP-hexose, and
UDP-N-acetylhexosamine.[6] According to Table 1, the corre-
sponding metabolite pools per mammalian cell were ~64 fmol
for glutamate, ~1 fmol for hexose phosphate, ~0.2 fmol for
reduced glutathione, ~0.6 fmol for ADP, ~5 fmol for ATP,
~1.5 fmol for UDP-glucose, and ~9 fmol for UDP� N-acetylglu-
cosamine. These relatively abundant metabolites regularly
appeared in the mass spectra, whereas metabolites with low
cellular abundances, e.g., cyclic-AMP at 0.0001 fmol and acetyl-
CoA at 0.002 fmol, were missing from the spectra. Although
relatively high metabolite amounts per cell are a prerequisite
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Table 1. Concentrations and pools of metabolites in single plant (Arabidopsis thaliana), mammalian (iBMK), yeast (S. cerevisiae), and bacterial (E. coli) cells. Cell volumes are 20 pL, 1 pL, 0.05 pL, and 0.001 pL,
respectively. Concentrations were established from bulk measurements in cell cultures or tissues.[48] Data for A. thaliana were for typical growth conditions.[62]

Metabolites KEGG ID A. thaliana Mammalian (iBMK) Yeast E. coli
Concentration [μM] Pool [amol] Concentration [μM] Pool [amol] Concentration [μM] Pool [amol] Concentration [μM] Pool [amol]

Amino acids Glutamine C00064 7190 143800 17200 17200 35500 1775 3810 4
Glutamate C00025 1728 34560 63800 63800 39100 1955 96000 96
Arginine C00062 3447 68940 255 255 21800 1090 569 0.6
Aspartate C00049 861 17220 14900 14900 6290 314.5 4230 4

Energy rich molecules AMP C00020 21 420 42 42 81 4 281 0.3
NAD+ C00003 21 420 502 502 2440 122 2550 3
ADP C00008 19 380 569 569 488 24 555 0.6
ATP C00002 14 280 4670 4670 1930 96.5 9630 10
NADP+ C00006 12 240 28 28 183 9 2 0.002
NADPH C00005 3 60 65 65 221 11 121 0.1
UTP C00075 1760 1760 494 25 8290 8
GTP C00044 677 677 247 12 4870 5
NADH C00004 75 75 107 5 84 0.1
Cyclic-AMP C00575 0.1 0.1 0.4 0.02 35 0.04

Sugar derivatives Glucose C00031 1196 23920
Sucrose C00089 1093 21860
Glucose-6-phosphate C00092 266 5320 675 675 5310 265.5 7880 8
UDP-glucose C00029 79 1580 1530 1530 268 13 2500 2
Fructose-6-phosphate C00085 66 1320 97 97 2370 118.5 2520 3
Fructose-1,6-bisphosphate C00354 5 100 1520 1520 4000 200 15200 15
ADP-glucose C00498 0.2 4 4 0.004
UDP� N-acetyl-glucosamine C00043 8970 8970 1020 51 9240 9
Hexose-phosphate 1070 1070 5860 293 8750 9
Glyceraldehyde-3-phosphate C00661 141 141 118 6 271 0.3
Pentose-phosphate 1320 1
Glucosamine-6-phosphate C00352 1150 1

Organic acids Malate C00149 926 18520 1390 1390 925 46 1680 2
Fumarate C00122 651 13020 485 485 124 6 288 0.3
Phosphoenolpyruvate C00074 77 1540 12 12 29 1 184 0.2
Citrate C00158 75 1500 584 584 1490 74.5 1960 2
Pyruvate C00022 53 1060 5880 5880 9400 470 3660 4
α-Ketoglutarate C00026 797 797 848 42 443 0.4
Oxaloacetate C00036 0.5 0.0005

Others Phosphate (orthophosphate) C00009 5830 5830 49300 2465 23900 24
Glutathione C00051 3090 3090 4300 215 16600 17
Acetyl-CoA C00024 29 29 44 2 606 0.6
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for detection, the peak intensities also depend on ionization
efficiencies that can vary widely for different metabolites.
However, when the cellular metabolite amount falls below the
LOD of the instrument for that compound, even 100%
ionization efficiency is insufficient to result in detection.

3.3. Mass spectrometry related limitations

Due to the volume limited samples in single cell work, very low
LOD is an important requirement for the mass spectrometer.
This means that all main components of the instrument,
sampling, ion source, analyzer, and detector, have to work at
their best. For metabolites with micromolar to millimolar
cellular concentrations (see Table 1), a mammalian cell contains
amol to fmol amounts of analyte. Under ideal conditions, most
high-end mass spectrometers can detect compounds in this
domain. Ion sources must be able to efficiently produce ions
from the metabolites and lipids in the cell. Several options have
demonstrated single cell capabilities, including SIMS, ESI,
MALDI, f-LAESI, and LDI from silicon nanopost arrays
(NAPA).[6,15,23,35–37,49–50] High ionization efficiency goes a long way
to identify metabolites even in microbial cells. For example, LDI
from NAPA with an 800 zmol LOD, detected and putatively
identified 24 metabolites in a yeast cell of ~30 fL in volume.[23]

Time-of-flight (TOF) systems stand out as the most commonly
used analyzers due to their very high ion transmission and
short (sub-millisecond) acquisition time. In some applications,
orbitrap and Fourier transform-ion cyclotron resonance (FT-ICR)
analyzers are used because of their excellent mass resolution
that can exceed 1,000,000 for the latter. This presents
opportunities for the discovery of elemental formulas from a
single cell even for unknown metabolites.[18]

Metabolomics for large cell populations heavily relies on
the combination of separation methods with MS. This option is
limited for single cells, because there are very few separation
methods capable of handling samples with such a small
volume. Capillary electrophoresis with ESI-MS has been used to
explore metabolites in neuronal phenotypes.[51] Another option,
ion mobility separation (IMS), moves the process past the ion
source. This allows for low sample losses and very fast
separation times, typically on the millisecond timescale but the
resolution of separation is low.[6] Emerging IMS modalities, e. g.,
structures for lossless manipulations (SLIM), have achieved
significantly improved resolution and demonstrated the separa-
tion of structural isomers.[52] As new IMS systems strive to
achieve higher resolution at the expense of longer separation
times, they might limit the throughput of single cell metab-
olomics.

Due to in-source fragmentation, the presence of structural
isomers, or quasi-isobaric ions, the lack of separation in single
cell analysis can result in the misannotation of metabolites.[19]

For example, in-source decay of ATP can result in ADP, AMP,
adenosine, and adenine. This not only creates ions not
necessarily present in the cell at detectable levels but can also
dramatically skew their biological abundances. The combina-

tion of new generation IMS with MS is expected to mitigate
these limitations.

To achieve the statistical characterization of heterogeneity
in metabolic cell states, numerous cells must be analyzed, and
for that, high-throughput techniques are needed. Currently,
only a few MS techniques are capable of high-throughput
single-cell analysis. These include single-cell printer liquid
vortex capture (SCP-LVC) MS at 1440 cells/h, optical microscopy
combined with MALDI-MS at 1000 cells/h, and f-LAESI-MS at 62
cells/h.[53–55] Patterning isolated single cells on a surface
followed by SIMS or MALDI-MS imaging also enable high
throughput, although the time required for sample preparation
and cell patterning can create a significant overhead.[30,56]

3.4. Half-life and diffusion of metabolites

Cellular metabolism continuously synthesizes and degrades
every metabolite through enzymatic reactions. Some com-
pounds also enter the cell from the environment, and some
others are excreted into the extracellular space. Therefore, the
pool of a metabolite present in the cell (see examples in
Table 1) is being replaced at a net rate linked to the rates of
synthesis and degradation, and for some, to incorporation and
excretion. Turnover rates are most conveniently expressed
through their inverse as half-life, t1/2, that is defined as the time
it takes to replace half of the pool for a particular compound.
This is an important metric for single cell analysis because it
indicates how quickly the metabolic processes must be
quenched to minimize distortions to the measured analyte
levels. For example, the half-lives for some slowly cycling
metabolites, e. g., phosphatidylcholines (PC), in single hepato-
cytes were determined to be t1/2(PC(16 :0/16 :0))=18.3�1.4 h
and t1/2(PC(16 :0/16 :1))=21.0�1.4 h.[6] However, for fast cycling
metabolites, e.g., ATP, the half-lives are much shorter, t1/2(ATP)
�5 s, requiring rapid quenching.[46] Quenching of metabolism
is most commonly accomplished by dramatically slowing down
the enzymatic reactions by flash freezing, or by denaturing the
enzymes using organic solvents, acids, or heat treatment.

Another factor that can distort the measured cellular
abundances of metabolites is their diffusion in the sample.
Displacement of molecules, driven by concentration gradients,
can be characterized by the diffusion length, x= (2Dt)1/2, where
D is the diffusion coefficient, and t is time. For small molecules
in human tissue at room temperature, D�10� 6 cm2/s, thus in
1 min they are displaced by ~110 μm. Considering that the
average linear dimension for human cells is ~15 μm, this
corresponds to a molecular displacement of more than 7 cell
diameters.[57] Cryogenic sample preparation or conservation are
often used to maintain the original spatial distributions.[35]

Minimizing the time and sample processing between a live
cell and its analysis goes a long way to reduce artifacts due to
metabolite turnover and diffusion. Recently developed ambi-
ent-ionization MS methods, including f-LAESI, capillary micro-
sampling, single-probe MS, nano-DESI, and laser desorption
ionization droplet delivery, offer low perturbation to cells in
their native environment.[39,55,58]
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3.5. Data analysis and integration

Data analysis in single cell metabolomics presents significant
challenges due to low-to-marginal signal intensities, the
multidimensional nature of the mass spectra, and the large
and increasing number of cells analyzed. Solutions for similar
issues have been introduced for single cell transcriptomics.
Large sets of mass spectra with marginal signal intensities
mean that some of the low intensity peaks are not present in
all spectra. Multiple missing value imputation techniques have
been proposed and tested for these scenarios including the
promising quantile regression imputation of left-censored data
(QRILC) approach.[59] Commonly used techniques for data
reduction by multivariate statistical analysis of high-dimen-
sional single cell omics datasets include the t-SNE and UMAP
methods.[26] Artificial intelligence and machine learning are
beginning to have an impact on both the extraction of
marginal signal from the spectra[60] and the uncovering of
hidden structures in the large single cell datasets.[61] Integration
of single cell metabolomics with single cell proteomics and
transcriptomics to produce the systems biology of a function-
ing cell is in its infancy. The complexities of this data
integration are sure to create new computational challenges.

4. Conclusions

Emerging techniques in MS for volume-limited samples are
laying the foundation for single cell metabolomics. With the
development of high-throughput methods, they allow the
determination of abundance distributions for hundreds of
metabolites over cell populations of increasing sizes. Capturing
metabolic heterogeneity, e.g., in the form of metabolic noise,
can reveal the tightness of regulation for the levels of particular
metabolites in complex pathway networks. Finding multimodal
abundance distributions can lead to the discovery of latent
subpopulations and hidden phenotypes primarily manifested in
different metabolite levels.

Future developments in this field strongly depend on
advances in MS technology, including the sensitivity of
ionization methods and mass-analysis, the throughput of cell
sampling, and the ability to perform the analysis with minimal
perturbation of the cell. The improving performance of ion
mobility separation methods is key for high throughput
distinction of isobaric species, e.g., structural isomers. Accurate
determination of the various metabolite levels, preferably via
absolute quantitation, is a major remaining challenge in the
field. Spatial metabolomics promises to explore how single cells
in an organ work together for functional outcomes. New
approaches are needed to directly analyze tissue embedded
cells to fulfill this promise.
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